NONSTATIONARY SHOCK WAVES IN A LOW-DENSITY PLASMA

G. I. Dudnikova UDC 533.95

Numerical methods are used to study nonstationary collisionless shocks in a plasma propagat-
ing at some arbitrary angle to the unperturbed magnetic field in cases where the electrical
conductivity and electron thermal conductivity have finite values.

Effects related to collisionless shock waves in a low-density plasma have been studied experimentally
and theoretically; numerical methods of modeling on a computer have been used in [1-7]. The structure of
the shock waves is determined by the nonlinearity, dispersion, and dissipation effects. Critical values of
the Mach number Mx have been determined at which there is a qualitative change in this structure.

Morton [4] has studied in detail both stationary and (to a lesser extent) nonstationary compression
waves in a two-fluid plasma with an arbitrarily oriented magnetic field; he does not include dissipation of
the energy required for the formation of shock waves or thermal conductivity. In [6, 7], an analysis of the
singular points of the equations describing the structure of the shock waves leads to the critical parameters
for which the solution becomes discontinuous. The solutions of the structure equations are given in [7]. The
propagation of nonstationary shock waves across a magnetic field is considered in [5] where the effect of
electrical conductivity and electron thermal conductivity are taken into account and the isomagnetic jump
in density for an almost constant magnetic field is studied.

This paper is devoted to a study by numerical methods in the two-fluid hydrodynamic approximation
of the structure and critical parameters of nonstationary shock waves propagating in a low-density plasma
at an arbitrary angle to the unperturbed magnetic field in cases where dispersion, electrical conductivity,
and electron thermal conduetivity are taken into account.

We take the wave propagating along the x axis and assume that the unperturbed magnetic field H;=
{Hyg, 0, Hz} lies in the xz plane, making an angle § with the z axis. The initial system of equations can be
written
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Here u= {u, v, w} is the macroscopic velocity of the plasma, o =ne2/me v is the conductivity, n, is
the electron thermal conductivity, v is the adiabatic coefficient, v is the effective collision frequency of
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the plasma particles with the fluctuations in the electromagnetic field (taken to be counstant), p=nT is the
electron pressure (the ions are assumed cold).

In order to solve the nonstationary problem we write (1) in dimensionless variables and Lagrangian
coordinates
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Here the magnetic field components Hy 2> the pressﬁre p, the Eulerian and Lagrangian coordinates
X, £, the time 7, the velocity components u, v, w, and the specific volume V are measured in units of Hy,

HO‘/SW c/wpy W~ VA, and ny, respectively, where w, is the hybrid frequency, Vp is the Alfvén velocity,
and the value of y is taken to be constant.

We assume that at the ianitial moment of time a uniform cold plasma with p, < H02/87r and density n,
occupies the region 0= x=xpax (0=4 =&, ) and that at the left boundary of this region the magnetic field
increases with time in some definite way; we can write the initial and boundary conditions as

z(&, 0 =& V(E 0 =1, H,( 0 =cosH
Hy(, 00 =pE 0)=u(0) =2 0)=w(E0)=T(E 0=0 3)
H.0,199=14+A4{ —ev9),
p(0, 7) = g(o, =0

aH am, 6(:( v, w)

a—a’({émax; T) = o (Erax, T) = Emex, T) =0 4)

where w is the frequency of the external field in units of wy and A is the amplitude of this field in units of
Ho,

The finite-difference analog of the differential problem (2)-(4) was programmed on 2 BESM-6 com-
puter, ’
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We consider the results obtained for suberitical Mach numbers (M < My).

It is shown in [5] that a sbock wave propagating across the magnetic field (9=0) is quasistationary
for M < 2.5 and that allowance for thermal conductivity produces only a very small increase in the width of
the front. In this paper we are mainly interested in waves traveling at some angle to the unperturbed field
(oblique waves with 6 = 0, 6 = 90°) or along it (longitudinal waves with ¢ = 90°).

Consider the case V< § < 1/2. I follows from the dispersion law for oblique waves (see, for
example, [8]) that the shock wave profile has an oscillatory leading train (or precursor). Typical quasi-
stationary profiles of the transverse magnetic field components (I is H, and II is Hy) for an oblique shock
wave are shown in Fig. 1. The spatial scale of the oscillations depends on the angle 9 and its order of
magnitude can be estimated from the equation & ~e#8/wyj. The total width of the front including the train
depends on the wave velocity, the angle §, and the amount of dissipation and can be estimated from the equa-
tion A ~VAM02/VB [2]. Calculations for A =2 and w =8 give for § =30, 45, and 60° the values 6 =(0.8,1.2,
and 1.8)c/wyi, and A= (3.5, 6, and 9.5)c/wi, respectively (wy; is the ion plasma frequency). There is a phase
difference between the magnetic field components and its value can be found from the equation tan ¢ ~ M@-
(1—62/M2)'n. Thus ¢ =70° for the case M=1.3, § =30°, » =8. The magnetic field profile leads the density
profile near the front by a distance

L ~c/4noVa(M —1) < B/ oy

as a result of the resistive dissipation mechanism [2]. When A =2, 6= 30°, and =8, for example, L =0.2
¢/wyi. An increase in the effective collision frequency v (or w = v/wx) changes the shape of the profile
from oscillatory to monotonic, The oscillations disappear when the dispersion size c6/w,y; becomes compar-
able to the dissipative size ¢?/(dmoVaM). Thus when A =2, ¢ =30°, the profile becomes monotonic for»=

16 (v =16wy).

The shock wave structure changes as the angle 9 gets smaller, When 6 >» 81/2 the dispersion is re-
lated to the anisotropy of the plasma (ion dispersion), and when 6 << g2 it is caused by the electron inertia
(electron dispersion). The dispersion laws are quite different for these two cases (w/k increases with the
wave number k in the first case but decreases in the second). The shock wave structure is therefore differ-
ent in these limiting cases (oscillations leading or lagging). As the value of 6 approaches § = g1/2, the
shock wave takes on an intermediate structure: oscillations with characteristic size 6~ ¢/w, behind the
front and oscillations with 6 ~ ¢/w,{ beyond the front,

Figure 2 shows the transformation in the magnetic field profile as the angle § between the plane of
the front and the direction of the unperturbed magnetic field is altered. The curves denoted by the numbers
1, 2, 3, 4, and 5 correspond to values of 9 =0, 2.5, 4, 5, and 6°. As the angle # is reduced, there is a devel-
opment of the oscillatory structure behind the front and a decrease in the leading oscillations, For M =2,
a double front structure is observed for angles of ¢ lying in the range 0pmin = 6 < 6max, where 0 in ~2°,
fmax ©6°. An increase in the Mach number produces 2 rise in 0yjn. Thus, for M ~2.3, 6,5, ~2.5°.

We consider now the propagation of shock waves along H (¢ =90°) at comparatively low frequencies
w ~ wj=eHy/mjec ("switch-on" wave). The amplitude and velocity of switch-on shock waves are bounded
from above by the values ~1.5H; and =2V 4 [9]. A typical profile for the magnetic field of a shock wave
propagating along H; is shown in Fig. 3. Curve I corresponds to the instant of time t= 13wi‘1‘ and curve
IIto t= 17&){1 (M =1.2, w=0,5 wj, A=1.3). Theprofile is actually the superposition of two waves because
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in the linear approximation two waves with frequencies w ~ w; can propagate along the magnetic field;
these waves have right- and left-handed circular polarization. The dispersion laws for the two waves are
different so that the magnetic field profile in a switch-on shock contains oscillations both behind the front
and beyond it. The faster wave, which has a resonance at w =eH;/mgc, leads the slower wave (with reso-
nance at w=eH;/m;c) and there is a spatial separation of the shock wave profile into two parts which differ
in the nature oftheir oscillations. A decrease in the frequency of the external field (to values of the order of
0.1 wj, for example) makes the two phase velocities approach each other so that the profile separation no
longer occurs.

We now consider the case of large Mach numbers. An increase in the Mach number produces a change
in the shock wave structure as a result of the increased effect of nonlinearity and nonstationarity. For
transverse propagation including the effect of thermal conductivity there is a quasistationary isomagnetic
jump in density for Mach numbers 2.8 € M £ 3.3,and for M > 3.4 the shock wave structure is broken up [5].
Calculations show that for oblique and longitudinal waves at sufficiently high Mach numbers thereis a con-
tinuous increase (in the absence of thermal conductivity) in the curvature of the density profile and the
x-component of the particle velocity., The solution approaches discontinuity in these functions. The values
of the critical Mach number M, vary with the angle 6 as shown below:

8° 0 30 45 60 85 90
M, 2.8 26 2.3 214 1.65 1.6

Thus, as the angle § between the plane of the front and the direction of the unperturbed magnetic field
H, increases, there is a decrease in the value of the critical Mach number My at which break-up of the
shock waves is observed.

Allowance for the electron thermal conductivity leads, for oblique waves, to the appearance of an iso-
magnetic jump whose width is determined by the coefficient of thermal conductivity. The critical Mach
numbers Mx for fixed § are higher than those obtained when thermal conductivity can be neglected. Calcula-
tions for x =0.1 % for angles 9 =0 and 30° give M , =3.5 and 2.9, respectively.

An analysis of the results for the case where 6 =90° shows that an increase of the Mach number of a
switch-on shock leads to a continuous decrease in the amplitude of the magnetic field and a sharp rise in
the gasdynamic pressure. The critical parameters of a switch-on shock at which inversion ocecurs have
been obtained when the amplitude of the external field at the plasma boundary A =1.7 and are equal to M, =
1.6 and H, =1.0.

Let us consider the effect of electron heating behind the wave front. Experimeuntal results [3, 10] and
theoretical predictions [1] indicate the prefereantial heating of the electron plasma component in the front
by a collisionless shock wave,and so in the case of (2)-(4) we take into account only the electron pressure,
i.e., we assume that T, >T; throughout.

Figure 4 shows the solution of the nonstationary problem (2)-(4) for 6 =30° (curve II), the experi-
mental variation of pressure behind the shock front with the amplitude of the magnetic field (obtained on
the UN-4 apparatus at the Institute of Nuclear Physics, Siberian Branch, Academy of Sciences of the USSR
[10], curve IID and the Hugoniot adiabatic (curve I) which characterizes the variation of the total gasdynamic
pressure p=pg +pj with the amplitude of the shock. It can be seen that the electron pressure p, =nT, is
almost equal to the total pressure of the plasma. This confirms the theoretical prediction that there is
preferential heating of the electron component when M < M, and H < H,. Similar conclusions can be drawn
for shock waves propagating across the unperturbed magnetic field [3].

The author thanks Yu. A. Berezin for valuable discussions.
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